

Simulating Effects of High Angle of Attack on Turbofan Engine Performance

Jonathan Litt

NASA Glenn Research Center

5th Propulsion Control and Diagnostics Workshop Ohio Aerospace Institute (OAI) Cleveland, OH September 16-17, 2015

Acknowledgments

James Liu, formerly of N&R Engineering
Russell W. Claus, formerly of NASA Glenn Research Center
Jonathan S. Litt, NASA Glenn Research Center
Ten-Huei Guo, NASA Glenn Research Center

Contents

- Overview
- CFD description & results
- Engine model description & implementation
- Simulation results
- Summary & future work

Overview

- Work initially performed under the Aviation Safety Program
- Continuing under the Airspace Operations and Safety Program

Angle of sideslip - deg

Overview

- Research into prevention and mitigation of aircraft loss-of-control scenarios
- Engine simulations generally do not account for offnominal flight conditions, e.g. high AOA, AOSS
- Previous research efforts
 - Experimental & computational
 - High AOA: mostly military applications
 - Inlet distortion: primarily focused on compressor stability
- This work is a preliminary attempt at modeling engine-wide effects of high AOA (AOSS) operation
- Combination of two modeling efforts: 3D CFD of fan/inlet + 0D turbofan engine model

CFD Simulation

- FINE/Turbo
- E³ fan geometry
- CFD simulation conducted on partial annulus geometry
- Given axial velocity (not shown), AOA defined by magnitude of cross-flow velocity
- Cross-flow orientation is different for each quadrant

CFD Simulation: Results

- Ran quadrant geometry through a range of cross-flow orientations (positive & negative for both circumferential & radial)
- Recorded change in W, PR, Eff as factors relative to zero cross-flow (i.e., AOA=0 condition)
- Did this for five operating points (op point defined by constant exit static pressure)

Engine Simulation: C-MAPSS40k

- 40,000-lb thrust class, high-bypass, dual-spool turbofan engine
- Zero-dimensional
- Spool dynamics
- Component performance maps
- Realistic control system (based on fan speed or engine pressure ratio)

Engine Simulation: Parallel Compressor

- Technique for simulating inlet distortion effects
- Multiple parallel copies of compressor model
- Inlet conditions varied to approximate desired distortion pattern

$$\begin{split} P_{s1} &= P_{s2} \\ P_{out} &= \frac{1}{6} P_{out,1} + \frac{5}{6} P_{out,2} \\ W_{out} &= W_1 + W_2 \\ T_{out} &= \frac{W_1}{W_{out}} T_{out,1} + \frac{W_2}{W_{out}} T_{out,2} \end{split}$$

Engine Simulation: Parallel Compressor

- Fan divided into four equal parallel components
- Maps of each parallel compressor modified by scaling factors from CFD
- Uniform exit static pressure

Results

- Increase AOA from 0 to 21 degrees (quasi-steady)
- Test cases:
 - Open-loop (OL): fuel flow held constant
 - Feedback control on fan speed (NF)
 - Feedback control on engine pressure ratio (EPR)

Results: Net Thrust

- Overall engine thrust decreases
- With higher AOA, fan performance decreases, fan thrust decreases
- Magnitude of thrust loss dependent on control parameter

Results: Control Parameters

- Degraded fan performance
 - Lower pressure rise
 - Less power required to maintain given fan speed
- OL: fan speed rises due to positive power imbalance on LP spool
- NF: cut fuel to maintain NF
- EPR: add fuel to increase pressure rise across fan to maintain EPR

Summary & Future Work

- Simulation of commercial aircraft-type fan/inlet at high AOA via 3D CFD
- Incorporation of CFD results into lower-fidelity turbofan model via parallel compressor theory
- Engine performance assessment must take into account engine control system
- Future work:
 - Full-annulus simulation of fan and inlet
 - Characterization of flow dynamics

References

 Liu, Yuan, Claus, Russell W., Litt, Jonathan S., Guo, Ten-Huei, "Simulating Effects of High Angle of Attack on Turbofan Engine Performance," AIAA 2013-1075, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TX, January 7-10, 2013, also NASA/TM— 2013-217846, February 2013.